Internal
problem
ID
[5659]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
325
Date
solved
:
Friday, October 03, 2025 at 01:40:15 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=x^4*diff(y(x),x)^3-x^3*y(x)*diff(y(x),x)^2-x^2*y(x)^2*diff(y(x),x)+x*y(x)^3 = 1; dsolve(ode,y(x), singsol=all);
ode=x^4 (D[y[x],x])^3 -x^3 y[x] (D[y[x],x])^2 - x^2 y[x]^2 D[y[x],x]+x y[x]^3==1; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), x)**3 - x**3*y(x)*Derivative(y(x), x)**2 - x**2*y(x)**2*Derivative(y(x), x) + x*y(x)**3 - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out