Internal
problem
ID
[5657]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
322
Date
solved
:
Tuesday, September 30, 2025 at 01:24:14 PM
CAS
classification
:
[`y=_G(x,y')`]
ode:=x*diff(y(x),x)^3-3*x^2*y(x)*diff(y(x),x)^2+x*(x^5+3*y(x)^2)*diff(y(x),x)-2*x^5*y(x)-y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=x (D[y[x],x])^3 -3 x^2 y[x] (D[y[x],x])^2 +x(x^5+3 y[x]^2) D[y[x],x]-2 x^5 y[x]- y[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x**5*y(x) - 3*x**2*y(x)*Derivative(y(x), x)**2 + x*(x**5 + 3*y(x)**2)*Derivative(y(x), x) + x*Derivative(y(x), x)**3 - y(x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out