23.2.275 problem 293

Internal problem ID [5630]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 293
Date solved : Tuesday, September 30, 2025 at 01:15:46 PM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} {y^{\prime }}^{3}+{\mathrm e}^{3 x -2 y} \left (y^{\prime }-1\right )&=0 \end{align*}
Maple. Time used: 15.404 (sec). Leaf size: 842
ode:=diff(y(x),x)^3+exp(3*x-2*y(x))*(diff(y(x),x)-1) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica
ode=(D[y[x],x])^3 +Exp[3*x -2*y[x]]*(D[y[x],x]-1)==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((Derivative(y(x), x) - 1)*exp(3*x - 2*y(x)) + Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out