23.2.205 problem 210

Internal problem ID [5560]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 2. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF SECOND OR HIGHER DEGREE, page 278
Problem number : 210
Date solved : Tuesday, September 30, 2025 at 12:53:16 PM
CAS classification : [[_1st_order, _with_linear_symmetries]]

\begin{align*} 9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y&=0 \end{align*}
Maple. Time used: 0.349 (sec). Leaf size: 87
ode:=9*y(x)*diff(y(x),x)^2+4*x^3*diff(y(x),x)-4*x^2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {i x^{2}}{3} \\ y &= \frac {i x^{2}}{3} \\ y &= 0 \\ y &= -\frac {2 \sqrt {c_1 \,x^{2}+9}}{c_1} \\ y &= \frac {2 \sqrt {c_1 \,x^{2}+9}}{c_1} \\ y &= -\frac {\sqrt {c_1 \left (-4 x^{2}+c_1 \right )}}{6} \\ y &= \frac {\sqrt {c_1 \left (-4 x^{2}+c_1 \right )}}{6} \\ \end{align*}
Mathematica. Time used: 0.539 (sec). Leaf size: 169
ode=9 y[x] (D[y[x],x])^2+4 x^3 D[y[x],x]-4 x^2 y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [\frac {1}{2} \log (y(x))-\frac {\sqrt {x^6+9 x^2 y(x)^2} \text {arctanh}\left (\frac {\sqrt {x^4+9 y(x)^2}}{x^2}\right )}{2 x \sqrt {x^4+9 y(x)^2}}=c_1,y(x)\right ]\\ \text {Solve}\left [\frac {\sqrt {x^6+9 x^2 y(x)^2} \text {arctanh}\left (\frac {\sqrt {x^4+9 y(x)^2}}{x^2}\right )}{2 x \sqrt {x^4+9 y(x)^2}}+\frac {1}{2} \log (y(x))=c_1,y(x)\right ]\\ y(x)&\to -\frac {i x^2}{3}\\ y(x)&\to \frac {i x^2}{3} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**3*Derivative(y(x), x) - 4*x**2*y(x) + 9*y(x)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -2*x*(-x**2 + sqrt(x**4 + 9*y(x)**2))/(9*y(x)) + Derivative(y(x), x) cannot be solved by the factorable group method