Internal
problem
ID
[5445]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
2.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
SECOND
OR
HIGHER
DEGREE,
page
278
Problem
number
:
92
Date
solved
:
Tuesday, September 30, 2025 at 12:43:27 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
ode:=4*diff(y(x),x)^2+2*exp(2*x-2*y(x))*diff(y(x),x)-exp(2*x-2*y(x)) = 0; dsolve(ode,y(x), singsol=all);
ode=4 (D[y[x],x])^2+2 Exp[2 x-2 y[x]] D[y[x],x]-Exp[2 x-2 y[x]]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*exp(2*x - 2*y(x))*Derivative(y(x), x) - exp(2*x - 2*y(x)) + 4*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out