Internal
problem
ID
[5330]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
719
Date
solved
:
Tuesday, September 30, 2025 at 12:30:28 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x*(x^3+y(x)^5)*diff(y(x),x) = (x^3-y(x)^5)*y(x); dsolve(ode,y(x), singsol=all);
ode=x(x^3+y[x]^5)D[y[x],x]==(x^3-y[x]^5)y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**3 + y(x)**5)*Derivative(y(x), x) - (x**3 - y(x)**5)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**3 - y(x)**5)*y(x)/(x*(x**3 + y(x)**5))