Internal
problem
ID
[5252]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
639
Date
solved
:
Tuesday, September 30, 2025 at 12:01:58 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
ode:=(x^2*a+2*b*x*y(x)+c*y(x)^2)*diff(y(x),x)+k*x^2+2*a*x*y(x)+b*y(x)^2 = 0; dsolve(ode,y(x), singsol=all);
ode=(a x^2+2 b x y[x]+c y[x]^2)D[y[x],x]+k x^2+2 a x y[x]+b y[x]^2==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") y = Function("y") ode = Eq(2*a*x*y(x) + b*y(x)**2 + k*x**2 + (a*x**2 + 2*b*x*y(x) + c*y(x)**2)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out