4.4.39 Problems 3801 to 3900

Table 4.621: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

Sympy

16629

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

16630

\[ {} 9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

16631

\[ {} 4 y^{\prime \prime }+y = 0 \]

16632

\[ {} y^{\prime \prime }+16 y = 0 \]

16633

\[ {} y^{\prime \prime }+16 y = 0 \]

16634

\[ {} y^{\prime \prime }+16 y = 0 \]

16635

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16636

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16637

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16638

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

16639

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

16666

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

16667

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

16668

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

16669

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16670

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16671

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

16672

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

16673

\[ {} x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

16674

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

16675

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

16676

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

16677

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16678

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16679

\[ {} 4 x^{2} y^{\prime \prime }+37 y = 0 \]

16680

\[ {} x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

16681

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

16682

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

16683

\[ {} 3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

16684

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

16685

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

16686

\[ {} x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

16687

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16688

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16689

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

16822

\[ {} y^{\prime \prime }+36 y = 0 \]

16823

\[ {} y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

16824

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

16825

\[ {} y^{\prime \prime }-36 y = 0 \]

16826

\[ {} y^{\prime \prime }-9 y^{\prime }+14 y = 0 \]

16827

\[ {} 16 y-7 x y^{\prime }+x^{2} y^{\prime \prime } = 0 \]

16830

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

16831

\[ {} y^{\prime \prime }+3 y = 0 \]

16832

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16833

\[ {} x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

16835

\[ {} x^{2} y^{\prime \prime }-6 y = 0 \]

16836

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

16837

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

16838

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

16839

\[ {} y^{\prime \prime }-8 y^{\prime }+25 y = 0 \]

16840

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

16841

\[ {} y^{\prime \prime }+y^{\prime }-30 y = 0 \]

16842

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

16843

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16845

\[ {} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

16846

\[ {} 9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

16849

\[ {} y^{\prime \prime }+20 y^{\prime }+100 y = 0 \]

16850

\[ {} x y^{\prime \prime } = 3 y^{\prime } \]

16851

\[ {} y^{\prime \prime }-5 y^{\prime } = 0 \]

16863

\[ {} x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]

16885

\[ {} t y^{\prime \prime }+y^{\prime }+t y = 0 \]

16886

\[ {} y^{\prime \prime }-9 y = 0 \]

16889

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = 0 \]

16891

\[ {} y^{\prime \prime }+6 y^{\prime }+13 y = 0 \]

16892

\[ {} y^{\prime \prime }+8 y^{\prime }+17 y = 0 \]

17072

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

17080

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

17081

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

17082

\[ {} x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

17084

\[ {} y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

17087

\[ {} x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

17088

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

17109

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

17110

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

17113

\[ {} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

17114

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

17122

\[ {} 16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

17131

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

17132

\[ {} y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

17133

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

17134

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

17145

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

17464

\[ {} y^{\prime \prime }-y = 0 \]

17465

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

17466

\[ {} 2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

17467

\[ {} y^{\prime \prime }+9 y = 0 \]

17468

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

17469

\[ {} y^{\prime \prime }+9 y = 0 \]

17470

\[ {} 3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

17471

\[ {} t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

17473

\[ {} y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

17474

\[ {} y^{\prime \prime }+16 y = 0 \]

17475

\[ {} y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

17476

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

17477

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

17478

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

17479

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

17480

\[ {} y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

17481

\[ {} y^{\prime \prime }+9 y = 0 \]

17482

\[ {} y^{\prime \prime }+49 y = 0 \]