23.1.420 problem 409
Internal
problem
ID
[5027]
Book
:
Ordinary
differential
equations
and
their
solutions.
By
George
Moseley
Murphy.
1960
Section
:
Part
II.
Chapter
1.
THE
DIFFERENTIAL
EQUATION
IS
OF
FIRST
ORDER
AND
OF
FIRST
DEGREE,
page
223
Problem
number
:
409
Date
solved
:
Tuesday, September 30, 2025 at 11:27:26 AM
CAS
classification
:
[_separable]
\begin{align*} y^{\prime } \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}&=\sqrt {b_{0} +b_{1} y+b_{2} y^{2}} \end{align*}
✓ Maple. Time used: 0.001 (sec). Leaf size: 76
ode:=diff(y(x),x)*(a__4*x^4+a__3*x^3+a__2*x^2+a__1*x+a__0)^(1/2) = (b__0+b__1*y(x)+b__2*y(x)^2)^(1/2);
dsolve(ode,y(x), singsol=all);
\[
\frac {\int \frac {1}{\sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}}}d x \sqrt {b_{2}}+c_1 \sqrt {b_{2}}-\ln \left (\frac {2 \sqrt {b_{0} +b_{1} y+b_{2} y^{2}}\, \sqrt {b_{2}}+2 b_{2} y+b_{1}}{\sqrt {b_{2}}}\right )+\ln \left (2\right )}{\sqrt {b_{2}}} = 0
\]
✓ Mathematica. Time used: 70.47 (sec). Leaf size: 17788
ode=D[y[x],x]*Sqrt[a0+a1*x+a2*x^2+a3*x^3+a4*x^4]==Sqrt[b0+b1*y[x]+b2*y[x]^2];
ic={};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
✓ Sympy. Time used: 14.733 (sec). Leaf size: 394
from sympy import *
x = symbols("x")
a0 = symbols("a0")
a1 = symbols("a1")
a2 = symbols("a2")
a3 = symbols("a3")
a4 = symbols("a4")
b0 = symbols("b0")
b1 = symbols("b1")
b2 = symbols("b2")
y = Function("y")
ode = Eq(-sqrt(b0 + b1*y(x) + b2*y(x)**2) + sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4)*Derivative(y(x), x),0)
ics = {}
dsolve(ode,func=y(x),ics=ics)
\[
\left [ y{\left (x \right )} = \begin {cases} C_{1} \sqrt {b_{0}} + \sqrt {b_{0}} \int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx & \text {for}\: b_{1} = 0 \wedge b_{2} = 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - \frac {b_{1}}{2 b_{2}} + e^{C_{1} \sqrt {b_{2}} + \sqrt {b_{2}} \int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx} & \text {for}\: b_{0} - \frac {b_{1}^{2}}{4 b_{2}} = 0 \wedge b_{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - b_{0} e^{- C_{1} \sqrt {b_{2}} - \sqrt {b_{2}} \int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx} + \frac {b_{1}^{2} e^{- C_{1} \sqrt {b_{2}} - \sqrt {b_{2}} \int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx}}{4 b_{2}} - \frac {b_{1}}{2 b_{2}} + \frac {e^{C_{1} \sqrt {b_{2}} + \sqrt {b_{2}} \int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx}}{4 b_{2}} & \text {for}\: b_{2} \neq 0 \wedge b_{0} - \frac {b_{1}^{2}}{4 b_{2}} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \frac {C_{1}^{2} b_{1}}{4} + \frac {C_{1} b_{1} \int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx}{2} - \frac {b_{0}}{b_{1}} + \frac {b_{1} \left (\int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx\right )^{2}}{4} & \text {for}\: b_{2} = 0 \wedge b_{1} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - \frac {b_{1}}{2 b_{2}} + e^{C_{1} \sqrt {b_{2}} - \sqrt {b_{2}} \int \frac {1}{\sqrt {a_{0} + a_{1} x + a_{2} x^{2} + a_{3} x^{3} + a_{4} x^{4}}}\, dx} & \text {for}\: b_{0} - \frac {b_{1}^{2}}{4 b_{2}} = 0 \wedge b_{2} \neq 0 \\\text {NaN} & \text {otherwise} \end {cases}\right ]
\]