23.1.374 problem 359

Internal problem ID [4981]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 359
Date solved : Tuesday, September 30, 2025 at 09:08:44 AM
CAS classification : [_linear]

\begin{align*} x \left (x^{2}+1\right ) y^{\prime }&=a -x^{2} y \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 25
ode:=x*(x^2+1)*diff(y(x),x) = a-x^2*y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-a \,\operatorname {arctanh}\left (\frac {1}{\sqrt {x^{2}+1}}\right )+c_1}{\sqrt {x^{2}+1}} \]
Mathematica. Time used: 0.037 (sec). Leaf size: 31
ode=x*(1+x^2)*D[y[x],x]==a-x^2*y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {-a \text {arctanh}\left (\sqrt {x^2+1}\right )+c_1}{\sqrt {x^2+1}} \end{align*}
Sympy. Time used: 1.809 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
a = symbols("a") 
y = Function("y") 
ode = Eq(-a + x**2*y(x) + x*(x**2 + 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {a \log {\left (\sqrt {x^{2} + 1} - 1 \right )}}{2} - \frac {a \log {\left (\sqrt {x^{2} + 1} + 1 \right )}}{2}}{\sqrt {x^{2} + 1}} \]