23.1.91 problem 85

Internal problem ID [4698]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Part II. Chapter 1. THE DIFFERENTIAL EQUATION IS OF FIRST ORDER AND OF FIRST DEGREE, page 223
Problem number : 85
Date solved : Tuesday, September 30, 2025 at 08:15:25 AM
CAS classification : [[_homogeneous, `class G`], _Abel]

\begin{align*} y^{\prime }&=\left (a +b x y\right ) y^{2} \end{align*}
Maple. Time used: 0.119 (sec). Leaf size: 103
ode:=diff(y(x),x) = (a+b*x*y(x))*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {{\mathrm e}^{\operatorname {RootOf}\left (2 \sqrt {a^{2}-4 b}\, a \,\operatorname {arctanh}\left (\frac {2 b \,{\mathrm e}^{\textit {\_Z}}+a}{\sqrt {a^{2}-4 b}}\right )-\ln \left (x^{2} \left (b \,{\mathrm e}^{2 \textit {\_Z}}+a \,{\mathrm e}^{\textit {\_Z}}+1\right )\right ) a^{2}+2 c_1 \,a^{2}+2 \textit {\_Z} \,a^{2}+4 \ln \left (x^{2} \left (b \,{\mathrm e}^{2 \textit {\_Z}}+a \,{\mathrm e}^{\textit {\_Z}}+1\right )\right ) b -8 c_1 b -8 \textit {\_Z} b \right )}}{x} \]
Mathematica. Time used: 0.113 (sec). Leaf size: 94
ode=D[y[x],x]==(a+b*x*y[x])*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {a^2 \left (-\frac {2 \arctan \left (\frac {a+2 b x y(x)}{a \sqrt {\frac {4 b}{a^2}-1}}\right )}{\sqrt {\frac {4 b}{a^2}-1}}-\log \left (\frac {b x y(x) (a+b x y(x))+b}{b^2 x^2 y(x)^2}\right )\right )}{2 b}=\frac {a^2 \log (x)}{b}+c_1,y(x)\right ] \]
Sympy. Time used: 6.184 (sec). Leaf size: 335
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
y = Function("y") 
ode = Eq((-a - b*x*y(x))*y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ C_{1} - \frac {\left (- \frac {a}{\sqrt {a^{2} - 4 b}} - 1\right ) \log {\left (x y{\left (x \right )} + \frac {- \frac {a^{4} \left (- \frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )^{2}}{2} + 2 a^{4} + \frac {7 a^{2} b \left (- \frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )^{2}}{2} - \frac {3 a^{2} b \left (- \frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )}{2} - 11 a^{2} b - 6 b^{2} \left (- \frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )^{2} + 6 b^{2} \left (- \frac {a}{\sqrt {a^{2} - 4 b}} - 1\right ) + 12 b^{2}}{a b \left (2 a^{2} - 9 b\right )} \right )}}{2} - \frac {\left (\frac {a}{\sqrt {a^{2} - 4 b}} - 1\right ) \log {\left (x y{\left (x \right )} + \frac {- \frac {a^{4} \left (\frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )^{2}}{2} + 2 a^{4} + \frac {7 a^{2} b \left (\frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )^{2}}{2} - \frac {3 a^{2} b \left (\frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )}{2} - 11 a^{2} b - 6 b^{2} \left (\frac {a}{\sqrt {a^{2} - 4 b}} - 1\right )^{2} + 6 b^{2} \left (\frac {a}{\sqrt {a^{2} - 4 b}} - 1\right ) + 12 b^{2}}{a b \left (2 a^{2} - 9 b\right )} \right )}}{2} + \log {\left (x \right )} - \log {\left (x y{\left (x \right )} \right )} = 0 \]