4.3.67 Problems 6601 to 6700

Table 4.497: Second order ode

#

ODE

Mathematica

Maple

Sympy

18901

\[ {} 6 y^{\prime \prime }-5 y^{\prime }+y = 0 \]

18902

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

18903

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

18904

\[ {} y^{\prime \prime }+3 y^{\prime } = 0 \]

18905

\[ {} y^{\prime \prime }+y = 0 \]

18906

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

18907

\[ {} y^{\prime \prime }+6 y^{\prime }+3 y = 0 \]

18908

\[ {} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4} = 0 \]

18909

\[ {} 2 y^{\prime \prime }+y^{\prime }-4 y = 0 \]

18910

\[ {} y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

18911

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 0 \]

18912

\[ {} 4 y^{\prime \prime }-y = 0 \]

18913

\[ {} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y = 0 \]

18914

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

18915

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

18916

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+\frac {5 y}{4} = 0 \]

18917

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }-6 y = 0 \]

18918

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

18919

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

18920

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

18921

\[ {} 2 x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

18922

\[ {} -3 y+x y^{\prime }+2 x^{2} y^{\prime \prime } = 0 \]

18923

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+17 y = 0 \]

18924

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

18925

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

18926

\[ {} y^{\prime \prime }+2 y = 0 \]

18927

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 0 \]

18928

\[ {} m y^{\prime \prime }+k y = 0 \]

18929

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 3 \,{\mathrm e}^{2 t} \]

18930

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

18931

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = -3 t \,{\mathrm e}^{-t} \]

18932

\[ {} y^{\prime \prime }+2 y^{\prime } = 3+4 \sin \left (2 t \right ) \]

18933

\[ {} y^{\prime \prime }+9 y = t^{2} {\mathrm e}^{3 t}+6 \]

18934

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 2 \,{\mathrm e}^{-t} \]

18935

\[ {} y^{\prime \prime }-5 y^{\prime }+4 y = 2 \,{\mathrm e}^{t} \]

18936

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

18937

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

18938

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

18939

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = t^{2}+3 \sin \left (t \right ) \]

18940

\[ {} y^{\prime \prime }+y = 3 \sin \left (2 t \right )+t \cos \left (2 t \right ) \]

18941

\[ {} u^{\prime \prime }+w_{0}^{2} u = \cos \left (w t \right ) \]

18942

\[ {} y^{\prime \prime }+y^{\prime }+4 y = 2 \sinh \left (t \right ) \]

18943

\[ {} y^{\prime \prime }-y^{\prime }-2 y = \cosh \left (2 t \right ) \]

18944

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 2 t \]

18945

\[ {} y^{\prime \prime }+4 y = t^{2}+3 \,{\mathrm e}^{t} \]

18946

\[ {} y^{\prime \prime }-2 y^{\prime }+y = t \,{\mathrm e}^{t}+4 \]

18947

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 3 t \,{\mathrm e}^{2 t} \]

18948

\[ {} y^{\prime \prime }+4 y = 3 \sin \left (2 t \right ) \]

18949

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-t} \cos \left (2 t \right ) \]

18950

\[ {} y^{\prime \prime }+3 y^{\prime } = 2 t^{4}+t^{2} {\mathrm e}^{-3 t}+\sin \left (3 t \right ) \]

18951

\[ {} y^{\prime \prime }+y = t \left (1+\sin \left (t \right )\right ) \]

18952

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = {\mathrm e}^{t} \cos \left (2 t \right )+{\mathrm e}^{2 t} \left (3 t +4\right ) \sin \left (t \right ) \]

18953

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = 3 \,{\mathrm e}^{-t}+2 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{-t} t^{2} \sin \left (t \right ) \]

18954

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 2 t^{2}+4 t \,{\mathrm e}^{2 t}+t \sin \left (2 t \right ) \]

18955

\[ {} y^{\prime \prime }+4 y = t^{2} \sin \left (2 t \right )+\left (6 t +7\right ) \cos \left (2 t \right ) \]

18956

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{t} \left (t^{2}+1\right ) \sin \left (2 t \right )+3 \,{\mathrm e}^{-t} \cos \left (t \right )+4 \,{\mathrm e}^{t} \]

18957

\[ {} y^{\prime \prime }-3 y^{\prime }-4 y = 2 \,{\mathrm e}^{-t} \]

18958

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = \ln \left (x \right ) \]

18959

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x \]

18960

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 x^{2}+2 \ln \left (x \right ) \]

18961

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \sin \left (\ln \left (x \right )\right ) \]

18962

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t \le \pi \\ \pi \,{\mathrm e}^{\pi -t} & \pi <t \end {array}\right . \]

18963

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0\le t \le \frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

18964

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} A t & 0\le t \le \pi \\ A \left (2 \pi -t \right ) & \pi <t \le 2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

18965

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{4}+2 y = 2 \cos \left (w t \right ) \]

18966

\[ {} y^{\prime \prime }+y = 2 \cos \left (w t \right ) \]

18967

\[ {} y^{\prime \prime }+y = 3 \cos \left (w t \right ) \]

18968

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (\frac {t}{4}\right ) \]

18969

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (2 t \right ) \]

18970

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{8}+4 y = 3 \cos \left (6 t \right ) \]

18971

\[ {} y^{\prime \prime }+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

18972

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{5}+y+\frac {y^{3}}{5} = \cos \left (w t \right ) \]

18973

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 2 \,{\mathrm e}^{t} \]

18974

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 2 \,{\mathrm e}^{-t} \]

18975

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{-t} \]

18976

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 16 \,{\mathrm e}^{\frac {t}{2}} \]

18977

\[ {} y^{\prime \prime }+y = \tan \left (t \right ) \]

18978

\[ {} y^{\prime \prime }+4 y = 3 \sec \left (2 t \right )^{2} \]

18979

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

18980

\[ {} y^{\prime \prime }+4 y = 2 \csc \left (\frac {t}{2}\right ) \]

18981

\[ {} 4 y^{\prime \prime }+y = 2 \sec \left (2 t \right ) \]

18982

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t^{2}+1} \]

18983

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = g \left (t \right ) \]

18984

\[ {} y^{\prime \prime }+4 y = g \left (t \right ) \]

18985

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 2 t^{3} \]

18986

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

18987

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

18988

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 3 x^{{3}/{2}} \sin \left (x \right ) \]

18989

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = g \left (x \right ) \]

18990

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = g \left (x \right ) \]

18991

\[ {} t^{2} y^{\prime \prime }-2 y = 3 t^{2}-1 \]

18992

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \ln \left (x \right ) \]

18993

\[ {} t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 4 t^{2} \]

18994

\[ {} t^{2} y^{\prime \prime }+7 t y^{\prime }+5 y = t \]

18995

\[ {} y^{\prime \prime }+y = g \left (t \right ) \]

18996

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = {\mathrm e}^{2 t} t^{2} \]

18997

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 2 \left (t -1\right )^{2} {\mathrm e}^{-t} \]

18998

\[ {} y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

18999

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

19000

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]