4.3.35 Problems 3401 to 3500

Table 4.433: Second order ode

#

ODE

Mathematica

Maple

Sympy

10789

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

10790

\[ {} x^{2} y^{\prime \prime }+\left (\frac {5}{3} x +x^{2}\right ) y^{\prime }-\frac {y}{3} = 0 \]

10791

\[ {} 2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

10792

\[ {} 2 x y^{\prime \prime }-\left (2 x +3\right ) y^{\prime }+y = 0 \]

10793

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (2 x -1\right ) y = 0 \]

10794

\[ {} -x y+2 y^{\prime }+x y^{\prime \prime } = 0 \]

10795

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10796

\[ {} x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \]

10797

\[ {} x^{4} y^{\prime \prime }+\lambda y = 0 \]

10798

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

10799

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (36 x^{2}-\frac {1}{4}\right ) y = 0 \]

10800

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-2\right ) y = 0 \]

10801

\[ {} x y^{\prime \prime }+3 y^{\prime }+x^{3} y = 0 \]

10802

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

10803

\[ {} 16 x^{2} y^{\prime \prime }+32 x y^{\prime }+\left (x^{4}-12\right ) y = 0 \]

10804

\[ {} x y-x^{2} y^{\prime }+y^{\prime \prime } = 0 \]

10805

\[ {} x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

10806

\[ {} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

10807

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

10808

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

10809

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+30 y = 0 \]

10810

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

10811

\[ {} x y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

10812

\[ {} 2 x \left (x -1\right ) y^{\prime \prime }-y^{\prime } \left (1+x \right )+y = 0 \]

10813

\[ {} x y^{\prime \prime }+2 y^{\prime }+4 x y = 0 \]

10814

\[ {} x y^{\prime \prime }+\left (2-2 x \right ) y^{\prime }+\left (x -2\right ) y = 0 \]

10815

\[ {} x^{2} y^{\prime \prime }+6 x y^{\prime }+\left (4 x^{2}+6\right ) y = 0 \]

10816

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

10817

\[ {} \left (1-x \right ) x y^{\prime \prime }+\left (\frac {1}{2}+2 x \right ) y^{\prime }-2 y = 0 \]

10818

\[ {} 4 \left (t^{2}-3 t +2\right ) y^{\prime \prime }-2 y^{\prime }+y = 0 \]

10819

\[ {} 2 \left (t^{2}-5 t +6\right ) y^{\prime \prime }+\left (2 t -3\right ) y^{\prime }-8 y = 0 \]

10820

\[ {} 3 t \left (t +1\right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]

10821

\[ {} x^{2} y^{\prime \prime }+\frac {\left (x +\frac {3}{4}\right ) y}{4} = 0 \]

10822

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\frac {y \left (x^{2}-1\right )}{4} = 0 \]

10823

\[ {} x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

10824

\[ {} y-y^{\prime } \left (1+x \right )+x y^{\prime \prime } = 0 \]

10825

\[ {} x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]

10826

\[ {} x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

10827

\[ {} 2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = 0 \]

10828

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

10829

\[ {} y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

10830

\[ {} u^{\prime \prime }+\frac {u}{x^{2}} = 0 \]

10831

\[ {} u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

10832

\[ {} y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

10833

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

10834

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

10835

\[ {} y^{\prime \prime }+\frac {y}{2 x^{4}} = 0 \]

10836

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10837

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10838

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10839

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10840

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10841

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10842

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10843

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10844

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10845

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10846

\[ {} y^{\prime \prime }-x y^{\prime }-x y = 0 \]

10847

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

10848

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-x y = 0 \]

10849

\[ {} x^{2} y^{\prime \prime }+\left (3 x^{2}+2 x \right ) y^{\prime }-2 y = 0 \]

10850

\[ {} 2 x^{2} \left (x^{2}+x +1\right ) y^{\prime \prime }+x \left (11 x^{2}+11 x +9\right ) y^{\prime }+\left (7 x^{2}+10 x +6\right ) y = 0 \]

10851

\[ {} x y^{\prime \prime }+y^{\prime } \left (1+x \right )+2 y = 0 \]

10852

\[ {} x^{2} \left (x^{2}-2 x +1\right ) y^{\prime \prime }-x \left (x +3\right ) y^{\prime }+\left (x +4\right ) y = 0 \]

10853

\[ {} 2 x^{2} \left (x +2\right ) y^{\prime \prime }+5 x^{2} y^{\prime }+\left (1+x \right ) y = 0 \]

10854

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

10855

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10856

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-\left (x^{2}+\frac {5}{4}\right ) y = 0 \]

10857

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10858

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+4 x^{4} y = 0 \]

10859

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

10860

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

10861

\[ {} x^{3} y^{\prime \prime }+y^{\prime }-\frac {y}{x} = 0 \]

10862

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10863

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 0 \]

10864

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

10865

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

10866

\[ {} x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

10867

\[ {} \left (1+x \right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

10868

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

10869

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

10870

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10871

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

10872

\[ {} \left (x^{2}+3\right ) y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

10873

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+8 x y^{\prime }+12 y = 0 \]

10874

\[ {} 3 y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

10875

\[ {} 5 y^{\prime \prime }-2 x y^{\prime }+10 y = 0 \]

10876

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-3 x y = 0 \]

10877

\[ {} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

10878

\[ {} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

10879

\[ {} \left (x^{2}-6 x +10\right ) y^{\prime \prime }-4 \left (x -3\right ) y^{\prime }+6 y = 0 \]

10880

\[ {} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y = 0 \]

10881

\[ {} t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

10882

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

10883

\[ {} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

10884

\[ {} x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

10885

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10886

\[ {} t^{2} y^{\prime \prime }-t \left (t +2\right ) y^{\prime }+\left (t +2\right ) y = 0 \]

10887

\[ {} t y^{\prime \prime }-\left (t +1\right ) y^{\prime }+y = 0 \]

10888

\[ {} \left (1-t \right ) y^{\prime \prime }+t y^{\prime }-y = 0 \]