4.3.30 Problems 2901 to 3000

Table 4.423: Second order ode

#

ODE

Mathematica

Maple

Sympy

10091

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

10092

\[ {} y^{\prime \prime }-x y^{\prime }-x y-2 x = 0 \]

10093

\[ {} y^{\prime \prime }-x y^{\prime }-x y-3 x = 0 \]

10094

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{2}-x = 0 \]

10095

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{3}+2 = 0 \]

10096

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{4}-6 = 0 \]

10097

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{5}+24 = 0 \]

10098

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

10099

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{2} = 0 \]

10100

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x^{3} = 0 \]

10101

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c x = 0 \]

10102

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{2} = 0 \]

10103

\[ {} y^{\prime \prime }-a x y^{\prime }-b x y-c \,x^{3} = 0 \]

10104

\[ {} y^{\prime \prime }-y^{\prime }-x y-x = 0 \]

10105

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2} = 0 \]

10106

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

10107

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{2}-1 = 0 \]

10108

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{2}-2 = 0 \]

10109

\[ {} y^{\prime \prime }-4 y^{\prime }-x y-x^{2}-4 = 0 \]

10110

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3}+1 = 0 \]

10111

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}-x^{2} = 0 \]

10112

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3}+2 = 0 \]

10113

\[ {} y^{\prime \prime }-2 y^{\prime }-x y-x^{3}+2 = 0 \]

10114

\[ {} y^{\prime \prime }-4 y^{\prime }-x y-x^{3}+2 = 0 \]

10115

\[ {} y^{\prime \prime }-6 y^{\prime }-x y-x^{3}+2 = 0 \]

10116

\[ {} y^{\prime \prime }-8 y^{\prime }-x y-x^{3}+2 = 0 \]

10117

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{4}+3 = 0 \]

10118

\[ {} y^{\prime \prime }-y^{\prime }-x y-x^{3} = 0 \]

10119

\[ {} y^{\prime \prime }-x y-x^{3}+2 = 0 \]

10120

\[ {} y^{\prime \prime }-x y-x^{6}+64 = 0 \]

10121

\[ {} y^{\prime \prime }-x y-x = 0 \]

10122

\[ {} y^{\prime \prime }-x y-x^{2} = 0 \]

10123

\[ {} y^{\prime \prime }-x y-x^{3} = 0 \]

10124

\[ {} y^{\prime \prime }-x y-x^{6}-x^{3}+42 = 0 \]

10125

\[ {} y^{\prime \prime }-x^{2} y-x^{2} = 0 \]

10126

\[ {} y^{\prime \prime }-x^{2} y-x^{3} = 0 \]

10127

\[ {} y^{\prime \prime }-x^{2} y-x^{4} = 0 \]

10128

\[ {} y^{\prime \prime }-x^{2} y-x^{4}+2 = 0 \]

10129

\[ {} y^{\prime \prime }-2 x^{2} y-x^{4}+1 = 0 \]

10130

\[ {} y^{\prime \prime }-x^{3} y-x^{3} = 0 \]

10131

\[ {} y^{\prime \prime }-x^{3} y-x^{4} = 0 \]

10132

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{2} = 0 \]

10133

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{3} = 0 \]

10134

\[ {} y^{\prime \prime }-x y^{\prime }-x y-x = 0 \]

10135

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x y-x^{2} = 0 \]

10136

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{2} y-x^{3}-x^{2} = 0 \]

10137

\[ {} y^{\prime \prime }-x^{2} y^{\prime }-x^{3} y-x^{4}-x^{2} = 0 \]

10138

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x y-x^{2}-\frac {1}{x} = 0 \]

10139

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{2} y-x^{3}-\frac {1}{x} = 0 \]

10140

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-x^{3} y-x^{4}-\frac {1}{x} = 0 \]

10141

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x y-x^{3}-x^{2} = 0 \]

10142

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{2} y-x^{3} = 0 \]

10143

\[ {} y^{\prime \prime }-x^{3} y^{\prime }-x^{3} y-x^{4}-x^{3} = 0 \]

10145

\[ {} y^{\prime \prime }+c y^{\prime }+k y = 0 \]

10147

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10148

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10149

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10150

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10151

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10152

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10153

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10154

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

10155

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

10156

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

10157

\[ {} y^{\prime \prime }+y^{\prime }+y = \sin \left (x \right ) \]

10159

\[ {} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = 1 \]

10160

\[ {} x^{4} y^{\prime \prime }+x^{3} y^{\prime }-4 x^{2} y = x \]

10161

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-4 y = x \]

10165

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

10166

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = x \]

10167

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+x {y^{\prime }}^{2} = 1 \]

10168

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y {y^{\prime }}^{2} = 0 \]

10169

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

10170

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} \sin \left (y\right ) = 0 \]

10171

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{3} = 0 \]

10174

\[ {} 4 x^{2} y^{\prime \prime }+y = 8 \sqrt {x}\, \left (\ln \left (x \right )+1\right ) \]

10239

\[ {} \frac {x y^{\prime \prime }}{1-x}+y = \frac {1}{1-x} \]

10240

\[ {} \frac {x y^{\prime \prime }}{1-x}+x y = 0 \]

10241

\[ {} \frac {x y^{\prime \prime }}{1-x}+y = \cos \left (x \right ) \]

10242

\[ {} \frac {x y^{\prime \prime }}{-x^{2}+1}+y = 0 \]

10243

\[ {} y^{\prime \prime } = \left (x^{2}+3\right ) y \]

10246

\[ {} y^{\prime \prime }+20 y^{\prime }+500 y = 100000 \cos \left (100 x \right ) \]

10247

\[ {} y^{\prime \prime } \sin \left (2 x \right )^{2}+y^{\prime } \sin \left (4 x \right )-4 y = 0 \]

10248

\[ {} y^{\prime \prime } = A y^{{2}/{3}} \]

10249

\[ {} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

10250

\[ {} y^{\prime \prime }+2 \cot \left (x \right ) y^{\prime }-y = 0 \]

10251

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

10252

\[ {} 4 x^{2} y^{\prime \prime }+\left (-8 x^{2}+4 x \right ) y^{\prime }+\left (4 x^{2}-4 x -1\right ) y = 4 \sqrt {x}\, {\mathrm e}^{x} \]

10253

\[ {} x y^{\prime \prime }-\left (2 x +2\right ) y^{\prime }+\left (x +2\right ) y = 6 x^{3} {\mathrm e}^{x} \]

10263

\[ {} y^{\prime \prime }+2 y^{\prime }-24 y = 16-\left (x +2\right ) {\mathrm e}^{4 x} \]

10264

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -2} \]

10267

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

10269

\[ {} y^{\prime \prime }+{\mathrm e}^{y} = 0 \]

10372

\[ {} y^{\prime \prime } = 0 \]

10373

\[ {} {y^{\prime \prime }}^{2} = 0 \]

10374

\[ {} {y^{\prime \prime }}^{n} = 0 \]

10375

\[ {} a y^{\prime \prime } = 0 \]

10376

\[ {} a {y^{\prime \prime }}^{2} = 0 \]

10377

\[ {} a {y^{\prime \prime }}^{n} = 0 \]

10378

\[ {} y^{\prime \prime } = 1 \]