Internal
problem
ID
[3954]
Book
:
Differential
equations
and
linear
algebra,
Stephen
W.
Goode
and
Scott
A
Annin.
Fourth
edition,
2015
Section
:
Chapter
10,
The
Laplace
Transform
and
Some
Elementary
Applications.
Exercises
for
10.4.
page
689
Problem
number
:
Problem
27
Date
solved
:
Tuesday, September 30, 2025 at 06:59:24 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+9*y(t) = 7*sin(4*t)+14*cos(4*t); ic:=[y(0) = 1, D(y)(0) = 2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+8*y[t]==7*Sin[4*t]+14*Cos[4*t]; ic={y[0]==1,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(9*y(t) - 7*sin(4*t) - 14*cos(4*t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)