11.7.2 problem 1.2-2 (b)

Internal problem ID [3448]
Book : Ordinary Differential Equations, Robert H. Martin, 1983
Section : Problem 1.2-2, page 12
Problem number : 1.2-2 (b)
Date solved : Tuesday, September 30, 2025 at 06:38:39 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=2 y \end{align*}

With initial conditions

\begin{align*} y \left (\ln \left (3\right )\right )&=3 \\ \end{align*}
Maple. Time used: 0.023 (sec). Leaf size: 10
ode:=diff(y(t),t) = 2*y(t); 
ic:=[y(ln(3)) = 3]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = \frac {{\mathrm e}^{2 t}}{3} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 14
ode=D[y[t],t]==2*y[t]; 
ic=y[Log[3]]==3; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {e^{2 t}}{3} \end{align*}
Sympy. Time used: 0.066 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*y(t) + Derivative(y(t), t),0) 
ics = {y(log(3)): 3} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {e^{2 t}}{3} \]