Internal
problem
ID
[3448]
Book
:
Ordinary
Differential
Equations,
Robert
H.
Martin,
1983
Section
:
Problem
1.2-2,
page
12
Problem
number
:
1.2-2
(b)
Date
solved
:
Tuesday, September 30, 2025 at 06:38:39 AM
CAS
classification
:
[_quadrature]
With initial conditions
ode:=diff(y(t),t) = 2*y(t); ic:=[y(ln(3)) = 3]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],t]==2*y[t]; ic=y[Log[3]]==3; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*y(t) + Derivative(y(t), t),0) ics = {y(log(3)): 3} dsolve(ode,func=y(t),ics=ics)