10.1.15 problem 3(i)

Internal problem ID [3417]
Book : Elementary Differential Equations, Martin, Reissner, 2nd ed, 1961
Section : Exercis 2, page 5
Problem number : 3(i)
Date solved : Tuesday, September 30, 2025 at 06:37:55 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime } \sin \left (x \right )&=1 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=diff(y(x),x)*sin(x) = 1; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\ln \left (\csc \left (x \right )+\cot \left (x \right )\right )+c_1 \]
Mathematica. Time used: 0.004 (sec). Leaf size: 13
ode=D[y[x],x]*Sin[x]==1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\text {arctanh}(\cos (x))+c_1 \end{align*}
Sympy. Time used: 0.113 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(sin(x)*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + \frac {\log {\left (\cos {\left (x \right )} - 1 \right )}}{2} - \frac {\log {\left (\cos {\left (x \right )} + 1 \right )}}{2} \]