9.19.19 problem 19

Internal problem ID [3303]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 37, page 171
Problem number : 19
Date solved : Tuesday, September 30, 2025 at 06:33:02 AM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} {y^{\prime }}^{2} y&=3 y^{\prime } x +y \end{align*}
Maple. Time used: 0.885 (sec). Leaf size: 273
ode:=y(x)*diff(y(x),x)^2 = 3*x*diff(y(x),x)+y(x); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= 0 \\ \ln \left (x \right )-\frac {3 \,\operatorname {arctanh}\left (\frac {3}{\sqrt {\frac {9 x^{2}+4 y^{2}}{x^{2}}}}\right )}{8}+\frac {5 \,\operatorname {arctanh}\left (\frac {9 x +8 y}{5 x \sqrt {\frac {9 x^{2}+4 y^{2}}{x^{2}}}}\right )}{16}-\frac {5 \,\operatorname {arctanh}\left (\frac {-9 x +8 y}{5 x \sqrt {\frac {9 x^{2}+4 y^{2}}{x^{2}}}}\right )}{16}+\frac {5 \ln \left (\frac {y+2 x}{x}\right )}{16}+\frac {5 \ln \left (\frac {y-2 x}{x}\right )}{16}+\frac {3 \ln \left (\frac {y}{x}\right )}{8}-c_1 &= 0 \\ \ln \left (x \right )+\frac {3 \,\operatorname {arctanh}\left (\frac {3}{\sqrt {\frac {9 x^{2}+4 y^{2}}{x^{2}}}}\right )}{8}-\frac {5 \,\operatorname {arctanh}\left (\frac {9 x +8 y}{5 x \sqrt {\frac {9 x^{2}+4 y^{2}}{x^{2}}}}\right )}{16}+\frac {5 \,\operatorname {arctanh}\left (\frac {-9 x +8 y}{5 x \sqrt {\frac {9 x^{2}+4 y^{2}}{x^{2}}}}\right )}{16}+\frac {5 \ln \left (\frac {y+2 x}{x}\right )}{16}+\frac {5 \ln \left (\frac {y-2 x}{x}\right )}{16}+\frac {3 \ln \left (\frac {y}{x}\right )}{8}-c_1 &= 0 \\ \end{align*}
Mathematica. Time used: 71.44 (sec). Leaf size: 2113
ode=D[y[x],x]^2*y[x]==3*D[y[x],x]*x+y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Too large to display

Sympy. Time used: 15.827 (sec). Leaf size: 87
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2 - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \log {\left (x \right )} = C_{1} + \log {\left (\frac {\sqrt {2} \sqrt [8]{\sqrt {9 + \frac {4 y^{2}{\left (x \right )}}{x^{2}}} - 3}}{2 \sqrt [8]{\sqrt {9 + \frac {4 y^{2}{\left (x \right )}}{x^{2}}} + 5} \sqrt {\sqrt {9 + \frac {4 y^{2}{\left (x \right )}}{x^{2}}} - 3 + \frac {2 y^{2}{\left (x \right )}}{x^{2}}}} \right )}, \ y{\left (x \right )} = 0\right ] \]