9.8.32 problem 33

Internal problem ID [3035]
Book : Differential Equations by Alfred L. Nelson, Karl W. Folley, Max Coral. 3rd ed. DC heath. Boston. 1964
Section : Exercise 12, page 46
Problem number : 33
Date solved : Tuesday, September 30, 2025 at 06:23:07 AM
CAS classification : [_exact]

\begin{align*} 2 x \tan \left (y\right )+3 y^{2}+x^{2}+\left (x^{2} \sec \left (y\right )^{2}+6 x y-y^{2}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.023 (sec). Leaf size: 30
ode:=2*x*tan(y(x))+3*y(x)^2+x^2+(x^2*sec(y(x))^2+6*x*y(x)-y(x)^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \tan \left (y\right ) x^{2}+\frac {x^{3}}{3}+3 x y^{2}-\frac {y^{3}}{3}+c_1 = 0 \]
Mathematica. Time used: 0.296 (sec). Leaf size: 87
ode=(2*x*Tan[y[x]]+3*y[x]^2+x^2)+(x^2*Sec[y[x]]^2+6*x*y[x]-y[x]^2)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\frac {1}{3} x^3 \sec ^2(y(x))+\frac {1}{3} x^3 \cos (2 y(x)) \sec ^2(y(x))+x^2 \sin (2 y(x)) \sec ^2(y(x))-\frac {2 y(x)^3}{3}+3 x y(x)^2 \sec ^2(y(x))+3 x y(x)^2 \cos (2 y(x)) \sec ^2(y(x))=c_1,y(x)\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2 + 2*x*tan(y(x)) + (x**2/cos(y(x))**2 + 6*x*y(x) - y(x)**2)*Derivative(y(x), x) + 3*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out