Internal
problem
ID
[1900]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
7
Series
Solutions
of
Linear
Second
Equations.
7.3
SERIES
SOLUTIONS
NEAR
AN
ORDINARY
POINT
II.
Exercises
7.3.
Page
338
Problem
number
:
9
Date
solved
:
Tuesday, September 30, 2025 at 05:21:04 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(2*x^2+3*x)*diff(diff(y(x),x),x)+10*(1+x)*diff(y(x),x)+8*y(x) = 0; ic:=[y(-1) = 1, D(y)(-1) = -1]; dsolve([ode,op(ic)],y(x),type='series',x=-1);
ode=(3*x+2*x^2)*D[y[x],{x,2}]+10*(1+x)*D[y[x],x]+8*y[x]==0; ic={y[-1]==1,Derivative[1][y][-1]==-1}; AsymptoticDSolveValue[{ode,ic},y[x],{x,-1,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((10*x + 10)*Derivative(y(x), x) + (2*x**2 + 3*x)*Derivative(y(x), (x, 2)) + 8*y(x),0) ics = {y(-1): 1, Subs(Derivative(y(x), x), x, -1): -1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-1,n=6)