6.11.15 problem 26

Internal problem ID [1854]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 7 Series Solutions of Linear Second Equations. 7.1 Exercises. Page 318
Problem number : 26
Date solved : Tuesday, September 30, 2025 at 05:20:33 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} \left (x^{2}+2\right ) y^{\prime \prime }+2 x \left (x^{2}+5\right ) y^{\prime }+2 \left (-x^{2}+3\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.026 (sec). Leaf size: 45
Order:=6; 
ode:=x^2*(x^2+2)*diff(diff(y(x),x),x)+2*x*(x^2+5)*diff(y(x),x)+2*(-x^2+3)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {c_1 \left (1+\frac {1}{8} x^{2}+\operatorname {O}\left (x^{6}\right )\right )}{x}+\frac {c_2 \left (\ln \left (x \right ) \left (2 x^{2}+\frac {1}{4} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\left (-2-\frac {3}{2} x^{2}-\frac {1}{4} x^{4}+\operatorname {O}\left (x^{6}\right )\right )\right )}{x^{3}} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 51
ode=x^2*(2+x^2)*D[y[x],{x,2}]+2*x*(x^2+5)*D[y[x],x]+2*(3-x^2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^4+7 x^2+4}{4 x^3}-\frac {\left (x^2+8\right ) \log (x)}{8 x}\right )+c_2 \left (\frac {x}{8}+\frac {1}{x}\right ) \]
Sympy. Time used: 0.472 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*(x**2 + 2)*Derivative(y(x), (x, 2)) + 2*x*(x**2 + 5)*Derivative(y(x), x) + (6 - 2*x**2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = \frac {C_{2}}{x} + \frac {C_{1}}{x^{3}} + O\left (x^{6}\right ) \]