Internal
problem
ID
[1835]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.7
Variation
of
Parameters.
Page
262
Problem
number
:
31
Date
solved
:
Tuesday, September 30, 2025 at 05:20:15 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=(x-1)^2*diff(diff(y(x),x),x)-2*(x-1)*diff(y(x),x)+2*y(x) = (x-1)^2; ic:=[y(0) = 3, D(y)(0) = -6]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(x-1)^2*D[y[x],{x,2}]-2*(x-1)*D[y[x],x]+2*y[x]==(x-1)^2; ic={y[0]==3,Derivative[1][y][0] ==-6}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x - 1)**2*Derivative(y(x), (x, 2)) - (x - 1)**2 - (2*x - 2)*Derivative(y(x), x) + 2*y(x),0) ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): -6} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*Derivative(y(x), (x, 2)) - x**2 - 2*x*Derivative(y(x), (x, 2)) + 2*x + 2*y(x) + Derivative(y(x), (x, 2)) - 1)/(2*(x - 1)) cannot be solved by the factorable group method