| ODE type | Count | MMA | Maple | Sympy |
| first_order_ode_linear |
\(1951\) |
99.95 |
100.00 |
95.64 |
| first_order_ode_separable |
\(1664\) |
98.26 |
99.82 |
92.97 |
| first_order_ode_exact |
\(5714\) |
98.30 |
99.61 |
84.53 |
| first_order_ode_clairaut |
\(187\) |
99.47 |
100.00 |
38.50 |
| first_order_ode_dAlembert |
\(1919\) |
97.66 |
99.90 |
78.27 |
| first_order_ode_isobaric |
\(1845\) |
99.24 |
99.78 |
82.93 |
| first_order_ode_abel_first_kind |
\(69\) |
100.00 |
100.00 |
31.88 |
| first_order_ode_abel_second_kind_solved_by_converting_to_first_kind |
\(529\) |
99.24 |
99.62 |
79.02 |
| first_order_ode_abel_second_kind_case_5 |
\(353\) |
100.00 |
100.00 |
73.65 |
| first_order_ode_abel_second_kind_canonical_table_5_lookup |
\(6\) |
66.67 |
83.33 |
0.00 |
| first_order_ode_quadrature |
\(351\) |
99.72 |
100.00 |
96.01 |
| first_order_ode_autonomous |
\(648\) |
92.59 |
99.69 |
86.42 |
| first_order_ode_riccati |
\(769\) |
91.55 |
95.71 |
39.53 |
| first_order_ode_reduced_riccati |
\(56\) |
100.00 |
100.00 |
14.29 |
| first_order_ode_time_varying_using_laplace |
\(14\) |
85.71 |
92.86 |
92.86 |
| first_order_ode_constant_coeff_using_laplace |
\(131\) |
100.00 |
98.47 |
87.02 |
| first_order_ode_flip_role |
\(46\) |
84.78 |
91.30 |
32.61 |
| second_order_linear_constant_coeff |
\(3306\) |
99.94 |
99.94 |
98.31 |
| second_order_euler_ode |
\(738\) |
99.86 |
100.00 |
94.04 |
| second_order_nonlinear_exact_ode |
\(79\) |
81.01 |
100.00 |
8.86 |
| second_order_linear_exact_ode |
\(609\) |
99.18 |
100.00 |
78.00 |
| second_order_ode_missing_x |
\(535\) |
92.15 |
98.50 |
19.25 |
| second_order_ode_missing_y |
\(666\) |
98.20 |
99.55 |
87.39 |
| second_order_integrable_as_is |
\(709\) |
97.60 |
100.00 |
67.56 |
| second_order_integrable_as_is_ABC |
\(708\) |
97.60 |
100.00 |
67.66 |
| second_order_ode_can_be_made_integrable |
\(311\) |
99.36 |
99.68 |
91.00 |
| second_order_ode_solved_by_an_integrating_factor |
\(671\) |
100.00 |
100.00 |
89.42 |
| second_order_airy |
\(38\) |
100.00 |
100.00 |
52.63 |
| second_order_change_of_variable_on_x_method_2 |
\(816\) |
99.63 |
99.88 |
76.72 |
| second_order_change_of_variable_on_x_method_1 |
\(138\) |
100.00 |
100.00 |
92.75 |
| second_order_change_of_variable_on_y_method_1 |
\(279\) |
99.28 |
100.00 |
47.67 |
| second_order_change_of_variable_on_y_method_2 |
\(796\) |
99.37 |
99.87 |
75.38 |
| second_order_nonlinear_solved_by_mainardi_lioville_method |
\(56\) |
100.00 |
100.00 |
23.21 |
| second_order_ode_non_constant_coeff_transformation_on_B |
\(378\) |
99.47 |
100.00 |
61.64 |
| second_order_bessel_ode |
\(312\) |
99.68 |
100.00 |
66.67 |
| second_order_bessel_ode_form_A |
\(16\) |
100.00 |
100.00 |
0.00 |
| second_order_kovacic |
\(5864\) |
99.90 |
99.97 |
75.22 |
| second_order_adjoint |
\(15\) |
73.33 |
100.00 |
20.00 |
| second_order_ode_constant_coeff_using_laplace |
\(629\) |
99.68 |
99.36 |
93.80 |
| second_order_ode_time_varying_using_laplace |
\(23\) |
95.65 |
100.00 |
17.39 |
| second_order_ode_flip_role |
\(21\) |
66.67 |
71.43 |
0.00 |
| second_order_ode_reduction_of_order |
\(260\) |
98.46 |
100.00 |
46.15 |
| higher_order_constant_coeff |
\(1470\) |
99.93 |
99.93 |
98.37 |
| higher_order_Euler_ode |
\(198\) |
100.00 |
100.00 |
95.96 |
| higher_order_ode_constant_coeff_using_laplace |
\(79\) |
98.73 |
100.00 |
89.87 |
| higher_order_ode_exact |
\(93\) |
100.00 |
100.00 |
58.06 |
| higher_order_missing_y |
\(57\) |
98.25 |
96.49 |
35.09 |