Internal
problem
ID
[25018]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
17.
Special
Equations
of
order
Two.
Exercises
at
page
251
Problem
number
:
37
Date
solved
:
Thursday, October 02, 2025 at 11:47:17 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=x^4*diff(diff(y(x),x),x) = diff(y(x),x)*(diff(y(x),x)+x^3); ic:=[y(1) = 2, D(y)(1) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^4*D[y[x],{x,2}]== D[y[x],x]*(D[y[x],x]+x^3 ); ic={y[1]==2,Derivative[1][y][1] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), (x, 2)) - (x**3 + Derivative(y(x), x))*Derivative(y(x), x),0) ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 1} dsolve(ode,func=y(x),ics=ics)