89.33.34 problem 37

Internal problem ID [25018]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 17. Special Equations of order Two. Exercises at page 251
Problem number : 37
Date solved : Thursday, October 02, 2025 at 11:47:17 PM
CAS classification : [[_2nd_order, _missing_y]]

\begin{align*} x^{4} y^{\prime \prime }&=y^{\prime } \left (y^{\prime }+x^{3}\right ) \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=2 \\ y^{\prime }\left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.046 (sec). Leaf size: 25
ode:=x^4*diff(diff(y(x),x),x) = diff(y(x),x)*(diff(y(x),x)+x^3); 
ic:=[y(1) = 2, D(y)(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = x^{2}-\ln \left (-x^{2}-1\right )+1+\ln \left (2\right )+i \pi \]
Mathematica. Time used: 0.504 (sec). Leaf size: 20
ode=x^4*D[y[x],{x,2}]== D[y[x],x]*(D[y[x],x]+x^3 ); 
ic={y[1]==2,Derivative[1][y][1] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^2-\log \left (x^2+1\right )+1+\log (2) \end{align*}
Sympy. Time used: 0.631 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4*Derivative(y(x), (x, 2)) - (x**3 + Derivative(y(x), x))*Derivative(y(x), x),0) 
ics = {y(1): 2, Subs(Derivative(y(x), x), x, 1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} - \log {\left (x^{2} + 1 \right )} + \log {\left (2 \right )} + 1 \]