89.32.24 problem 27

Internal problem ID [24984]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Miscellaneous Exercises at page 246
Problem number : 27
Date solved : Thursday, October 02, 2025 at 11:45:53 PM
CAS classification : [_dAlembert]

\begin{align*} {y^{\prime }}^{2}+y y^{\prime }-x -1&=0 \end{align*}
Maple. Time used: 0.133 (sec). Leaf size: 661
ode:=diff(y(x),x)^2+y(x)*diff(y(x),x)-x-1 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \frac {-\sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}-4}\, \sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}+4}\, \left (y+\sqrt {y^{2}+4 x +4}\right ) \ln \left (-y-\sqrt {y^{2}+4 x +4}+\sqrt {2 y^{2}+2 y \sqrt {y^{2}+4 x +4}+4 x}\right )+\left (\sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}+4}\, \left (1+x \right ) \sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}-4}+2 c_1 \left (y+\sqrt {y^{2}+4 x +4}\right )\right ) \sqrt {2 y^{2}+2 y \sqrt {y^{2}+4 x +4}+4 x}+\ln \left (2\right ) \sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}-4}\, \sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}+4}\, \left (y+\sqrt {y^{2}+4 x +4}\right )}{\sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}-4}\, \sqrt {2 y^{2}+2 y \sqrt {y^{2}+4 x +4}+4 x}\, \sqrt {-2 y-2 \sqrt {y^{2}+4 x +4}+4}} &= 0 \\ \frac {-\sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}-4}\, \sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}+4}\, \left (y-\sqrt {y^{2}+4 x +4}\right ) \ln \left (-y+\sqrt {y^{2}+4 x +4}+\sqrt {2 y^{2}-2 y \sqrt {y^{2}+4 x +4}+4 x}\right )+\left (\sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}+4}\, \left (1+x \right ) \sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}-4}+2 c_1 \left (y-\sqrt {y^{2}+4 x +4}\right )\right ) \sqrt {2 y^{2}-2 y \sqrt {y^{2}+4 x +4}+4 x}+\ln \left (2\right ) \sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}-4}\, \sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}+4}\, \left (y-\sqrt {y^{2}+4 x +4}\right )}{\sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}-4}\, \sqrt {2 y^{2}-2 y \sqrt {y^{2}+4 x +4}+4 x}\, \sqrt {-2 y+2 \sqrt {y^{2}+4 x +4}+4}} &= 0 \\ \end{align*}
Mathematica. Time used: 0.317 (sec). Leaf size: 106
ode=D[y[x],x]^2+y[x]*D[y[x],x]-x-1==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\left \{x=\frac {K[1] \left (-2 \arctan \left (\frac {\sqrt {1-K[1]^2}}{K[1]+1}\right )-\frac {\sqrt {1-K[1]^2}}{K[1]}\right )}{\sqrt {1-K[1]^2}}+\frac {c_1 K[1]}{\sqrt {1-K[1]^2}},y(x)=\frac {x}{K[1]}+\frac {1-K[1]^2}{K[1]}\right \},\{y(x),K[1]\}\right ] \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + y(x)*Derivative(y(x), x) + Derivative(y(x), x)**2 - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out