Internal
problem
ID
[24972]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Miscellaneous
Exercises
at
page
246
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 11:45:12 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=x^2*diff(y(x),x)^3-2*x*y(x)*diff(y(x),x)^2+y(x)^2*diff(y(x),x)+1 = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]^3-2*x*y[x]*D[y[x],x]^2+y[x]^2*D[y[x],x]+1==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x)**3 - 2*x*y(x)*Derivative(y(x), x)**2 + y(x)**2*Derivative(y(x), x) + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out