Internal
problem
ID
[24968]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Miscellaneous
Exercises
at
page
246
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 11:45:08 PM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=4*x^5*diff(y(x),x)^2+12*x^4*y(x)*diff(y(x),x)+9 = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^5*D[y[x],x]^2+12*x^4*y[x]*D[y[x],x]+9==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**5*Derivative(y(x), x)**2 + 12*x**4*y(x)*Derivative(y(x), x) + 9,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out