Internal
problem
ID
[24963]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Miscellaneous
Exercises
at
page
246
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 11:45:04 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=9*diff(y(x),x)^2+3*x*y(x)^4*diff(y(x),x)+y(x)^5 = 0; dsolve(ode,y(x), singsol=all);
ode=9*D[y[x],x]^2+3*x*y[x]^4*D[y[x],x]+y[x]^5==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x*y(x)**4*Derivative(y(x), x) + y(x)**5 + 9*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*y(x)**4/6 - sqrt((x**2*y(x)**3 - 4)*y(x)**5)/6 + Derivative(y(