89.30.18 problem 20

Internal problem ID [24935]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 243
Problem number : 20
Date solved : Thursday, October 02, 2025 at 11:36:16 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _dAlembert]

\begin{align*} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y&=0 \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 58
ode:=2*diff(y(x),x)^3+x*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-c_1^{2}-24 x \right ) \sqrt {c_1^{2}+24 x}}{432}-\frac {c_1^{3}}{432}-\frac {c_1 x}{12} \\ y &= \frac {\left (c_1^{2}+24 x \right )^{{3}/{2}}}{432}-\frac {c_1^{3}}{432}-\frac {c_1 x}{12} \\ \end{align*}
Mathematica
ode=2*D[y[x],x]^3+x*D[y[x],x]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - 2*y(x) + 2*Derivative(y(x), x)**3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out