Internal
problem
ID
[24924]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
243
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 10:49:46 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x^4*diff(y(x),x)^2+2*x^3*y(x)*diff(y(x),x)-4 = 0; dsolve(ode,y(x), singsol=all);
ode=x^4*D[y[x],x]^2+2*x^3*y[x]*D[y[x],x]-4==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*Derivative(y(x), x)**2 + 2*x**3*y(x)*Derivative(y(x), x) - 4,0) ics = {} dsolve(ode,func=y(x),ics=ics)