89.28.10 problem 10

Internal problem ID [24898]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 229
Problem number : 10
Date solved : Thursday, October 02, 2025 at 10:49:12 PM
CAS classification : [_quadrature]

\begin{align*} y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-y x&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 34
ode:=y(x)*diff(y(x),x)^2+(x-y(x)^2)*diff(y(x),x)-x*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {-x^{2}+c_1} \\ y &= -\sqrt {-x^{2}+c_1} \\ y &= c_1 \,{\mathrm e}^{x} \\ \end{align*}
Mathematica. Time used: 0.053 (sec). Leaf size: 54
ode=y[x]*D[y[x],x]^2+ (x-y[x]^2)*D[y[x],x]-x*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^x\\ y(x)&\to -\sqrt {-x^2+2 c_1}\\ y(x)&\to \sqrt {-x^2+2 c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.369 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*y(x) + (x - y(x)**2)*Derivative(y(x), x) + y(x)*Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} - x^{2}}, \ y{\left (x \right )} = \sqrt {C_{1} - x^{2}}, \ y{\left (x \right )} = C_{1} e^{x}\right ] \]