Internal
problem
ID
[24576]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
8.
Linear
Differential
Equations
with
constant
coefficients.
Exercises
at
page
121
Problem
number
:
22
Date
solved
:
Thursday, October 02, 2025 at 10:46:12 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+4*diff(y(x),x)+4*y(x) = 0; ic:=[y(0) = 2, y(2) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+4*D[y[x],{x,1}]+ 4*y[x] ==0; ic={y[0]==2,y[2] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 2, y(2): 0} dsolve(ode,func=y(x),ics=ics)