Internal
problem
ID
[24489]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
4.
Additional
topics
on
equations
of
first
order
and
first
degree.
Exercises
at
page
72
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 10:42:28 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational]
ode:=2*y(x)*(x+y(x)+2)+(y(x)^2-x^2-4*x-1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*y[x]*( x+y[x]+2)+( y[x]^2-x^2-4*x-1 )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*(x + y(x) + 2)*y(x) + (-x**2 - 4*x + y(x)**2 - 1)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)