Internal
problem
ID
[24448]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
4.
Additional
topics
on
equations
of
first
order
and
first
degree.
Exercises
at
page
61
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 10:35:57 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=k*exp(2*v(u))-u-2*exp(2*v(u))*(exp(2*v(u))+k*u)*diff(v(u),u) = 0; dsolve(ode,v(u), singsol=all);
ode=( k*Exp[2*v[u]] -u )-2*Exp[2*v[u]]* (Exp[2*v[u]]+k*u )*D[v[u],u]==0; ic={}; DSolve[{ode,ic},v[u],u,IncludeSingularSolutions->True]
from sympy import * u = symbols("u") k = symbols("k") v = Function("v") ode = Eq(k*exp(2*v(u)) - u - 2*(k*u + exp(2*v(u)))*exp(2*v(u))*Derivative(v(u), u),0) ics = {} dsolve(ode,func=v(u),ics=ics)
NotImplementedError : The given ODE Derivative(v(u), u) - (k*exp(2*v(u)) - u)*exp(-2*v(u))/(2*(k*u +