Internal
problem
ID
[24341]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
39
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 10:20:35 PM
CAS
classification
:
[_exact, _rational]
With initial conditions
ode:=x*(x^2-y(x)^2-x)-y(x)*(x^2-y(x)^2)*diff(y(x),x) = 0; ic:=[y(2) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*( x^2-y[x]^2-x )-y[x]*( x^2-y[x]^2)*D[y[x],x]==0; ic={y[2]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 - x - y(x)**2) - (x**2 - y(x)**2)*y(x)*Derivative(y(x), x),0) ics = {y(2): 0} dsolve(ode,func=y(x),ics=ics)
Timed Out