Internal
problem
ID
[24325]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
39
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 10:18:08 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, _Bernoulli]
ode:=x^3*y(x)^3+1+x^4*y(x)^2*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( x^3*y[x]^3+1)+(x^4*y[x]^2)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**4*y(x)**2*Derivative(y(x), x) + x**3*y(x)**3 + 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)