Internal
problem
ID
[24322]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
34
Problem
number
:
25
Date
solved
:
Thursday, October 02, 2025 at 10:18:00 PM
CAS
classification
:
[_exact]
With initial conditions
ode:=y(x)*exp(x*y(x))-2*y(x)^3+(x*exp(x*y(x))-6*x*y(x)^2-2*y(x))*diff(y(x),x) = 0; ic:=[y(0) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( y[x]*Exp[ x*y[x]] -2*y[x]^3 )+ ( x*Exp[x*y[x]] - 6*x*y[x]^2 -2*y[x] )*D[y[x],x]==0; ic={y[0]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-6*x*y(x)**2 + x*exp(x*y(x)) - 2*y(x))*Derivative(y(x), x) - 2*y(x)**3 + y(x)*exp(x*y(x)),0) ics = {y(0): 2} dsolve(ode,func=y(x),ics=ics)
Timed Out