Internal
problem
ID
[24293]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
27
Problem
number
:
30
Date
solved
:
Thursday, October 02, 2025 at 10:08:08 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class C`], _dAlembert]
With initial conditions
ode:=y(x)*(2*x^2-x*y(x)+y(x)^2)-x^2*(2*x-y(x))*diff(y(x),x) = 0; ic:=[y(1) = 1/2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=y[x]*( 2*x^2-x*y[x]+y[x]^2 )-x^2*( 2*x-y[x] )*D[y[x],x]==0; ic={y[1]==1/2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*(2*x - y(x))*Derivative(y(x), x) + (2*x**2 - x*y(x) + y(x)**2)*y(x),0) ics = {y(1): 1/2} dsolve(ode,func=y(x),ics=ics)
TypeError : cannot determine truth value of Relational: _X0**2 < 2