Internal
problem
ID
[24263]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
21
Problem
number
:
28
Date
solved
:
Saturday, October 04, 2025 at 05:36:05 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=(2*a^2-r(theta)^2)*diff(r(theta),theta) = r(theta)^3*sin(theta); ic:=[r(0) = a]; dsolve([ode,op(ic)],r(theta), singsol=all);
ode=(2*a^2-r[\[Theta]]^2)*D[r[\[Theta]],\[Theta]]==r[\[Theta]]^3*Sin[\[Theta]]; ic={r[0]==a}; DSolve[{ode,ic},r[\[Theta]],\[Theta],IncludeSingularSolutions->True]
{}
from sympy import * t = symbols("t") a = symbols("a") r = Function("r") ode = Eq((2*a**2 - r(t)**2)*Derivative(r(t), t) - r(t)**3*sin(t),0) ics = {r(0): a} dsolve(ode,func=r(t),ics=ics)