88.24.12 problem 12

Internal problem ID [24205]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 7. Series Methods. Exercises at page 202
Problem number : 12
Date solved : Friday, October 03, 2025 at 08:03:53 AM
CAS classification : [[_3rd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (-x^{4}+1\right ) y^{\prime \prime \prime }-24 y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 34
Order:=6; 
ode:=(-x^4+1)*diff(diff(diff(y(x),x),x),x)-24*x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (x^{4}+1\right ) y \left (0\right )+\left (x +\frac {2}{5} x^{5}\right ) y^{\prime }\left (0\right )+\frac {y^{\prime \prime }\left (0\right ) x^{2}}{2}+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 33
ode=(1-x^4)*D[y[x],{x,3}]-24*x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {2 x^5}{5}+x\right )+c_1 \left (x^4+1\right )+\frac {c_3 x^2}{2} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*y(x) + (x**3 - 8)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
Series solution not supported for ode of order > 2