Internal
problem
ID
[24115]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Exercises
at
page
127
Problem
number
:
8
Date
solved
:
Thursday, October 02, 2025 at 09:59:21 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(x),x),x),x)-6*diff(diff(y(x),x),x)+12*diff(y(x),x)-8*y(x) = x^4*exp(2*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+12*D[y[x],x]-8*y[x]==x^4*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**4*exp(2*x) - 8*y(x) + 12*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)