88.17.4 problem 8

Internal problem ID [24115]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 5. Special Techniques for Linear Equations. Exercises at page 127
Problem number : 8
Date solved : Thursday, October 02, 2025 at 09:59:21 PM
CAS classification : [[_3rd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=x^{4} {\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 24
ode:=diff(diff(diff(y(x),x),x),x)-6*diff(diff(y(x),x),x)+12*diff(y(x),x)-8*y(x) = x^4*exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (\frac {1}{210} x^{7}+c_1 +c_2 x +c_3 \,x^{2}\right ) \]
Mathematica. Time used: 0.006 (sec). Leaf size: 34
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+12*D[y[x],x]-8*y[x]==x^4*Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{210} e^{2 x} \left (x^7+210 c_3 x^2+210 c_2 x+210 c_1\right ) \end{align*}
Sympy. Time used: 0.274 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4*exp(2*x) - 8*y(x) + 12*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + x \left (C_{3} + \frac {x^{5}}{210}\right )\right )\right ) e^{2 x} \]