Internal
problem
ID
[24104]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
4.
Linear
equations.
Exercises
at
page
97
Problem
number
:
8
Date
solved
:
Thursday, October 02, 2025 at 09:59:16 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 1+2*x+3*exp(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==1+2*x+3*Exp[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x + y(x) - 3*exp(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)