Internal
problem
ID
[24102]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
4.
Linear
equations.
Exercises
at
page
97
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 09:59:15 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)+diff(y(x),x)-2*y(x) = 2*exp(x); ic:=[y(0) = 1, D(y)(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+D[y[x],x]-2*y[x]==2*Exp[x]; ic={y[0]==1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*y(x) - 2*exp(x) + Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)