88.7.13 problem 13

Internal problem ID [24008]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 41
Problem number : 13
Date solved : Thursday, October 02, 2025 at 09:53:46 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} x^{4}-3 y+3 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 28
ode:=x^4-3*y(x)+3*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = 4 x^{2}+\frac {4 x^{3}}{3}+\frac {x^{4}}{3}+8 x +8+{\mathrm e}^{x} c_1 \]
Mathematica. Time used: 0.039 (sec). Leaf size: 35
ode=( x^4-3*y[x] )+( 3  )*D[y[x],{x,1}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^4}{3}+\frac {4 x^3}{3}+4 x^2+8 x+c_1 e^x+8 \end{align*}
Sympy. Time used: 0.093 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**4 - 3*y(x) + 3*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{x} + \frac {x^{4}}{3} + \frac {4 x^{3}}{3} + 4 x^{2} + 8 x + 8 \]