88.4.10 problem 10

Internal problem ID [23974]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 33
Problem number : 10
Date solved : Thursday, October 02, 2025 at 09:48:20 PM
CAS classification : [_separable]

\begin{align*} y^{2} \sec \left (x \right )^{2} y^{\prime }+x&=0 \end{align*}
Maple. Time used: 0.010 (sec). Leaf size: 107
ode:=y(x)^2*sec(x)^2*diff(y(x),x)+x = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (-6 x \sin \left (2 x \right )-6 x^{2}-3 \cos \left (2 x \right )+8 c_1 +3\right )^{{1}/{3}}}{2} \\ y &= -\frac {\left (-6 x \sin \left (2 x \right )-6 x^{2}-3 \cos \left (2 x \right )+8 c_1 +3\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{4} \\ y &= \frac {\left (-6 x \sin \left (2 x \right )-6 x^{2}-3 \cos \left (2 x \right )+8 c_1 +3\right )^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{4} \\ \end{align*}
Mathematica. Time used: 0.276 (sec). Leaf size: 126
ode=y[x]^2*Sec[x]^2*D[y[x],{x,1}]+x==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{2} \sqrt [3]{-3} \sqrt [3]{-\cos (2 x)-2 \left (x^2+x \sin (2 x)-4 c_1\right )}\\ y(x)&\to \frac {1}{2} \sqrt [3]{3} \sqrt [3]{-\cos (2 x)-2 \left (x^2+x \sin (2 x)-4 c_1\right )}\\ y(x)&\to \frac {1}{2} (-1)^{2/3} \sqrt [3]{3} \sqrt [3]{-\cos (2 x)-2 \left (x^2+x \sin (2 x)-4 c_1\right )} \end{align*}
Sympy. Time used: 4.025 (sec). Leaf size: 175
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + y(x)**2*sec(x)**2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1} - \frac {3 x^{2} \sin ^{2}{\left (x \right )}}{4} - \frac {3 x^{2} \cos ^{2}{\left (x \right )}}{4} - \frac {3 x \sin {\left (x \right )} \cos {\left (x \right )}}{2} + \frac {3 \sin ^{2}{\left (x \right )}}{4}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1} - \frac {3 x^{2} \sin ^{2}{\left (x \right )}}{4} - \frac {3 x^{2} \cos ^{2}{\left (x \right )}}{4} - \frac {3 x \sin {\left (x \right )} \cos {\left (x \right )}}{2} + \frac {3 \sin ^{2}{\left (x \right )}}{4}}}{2}, \ y{\left (x \right )} = \sqrt [3]{C_{1} - \frac {3 x^{2} \sin ^{2}{\left (x \right )}}{4} - \frac {3 x^{2} \cos ^{2}{\left (x \right )}}{4} - \frac {3 x \sin {\left (x \right )} \cos {\left (x \right )}}{2} + \frac {3 \sin ^{2}{\left (x \right )}}{4}}\right ] \]