88.4.1 problem 1

Internal problem ID [23965]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 33
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:47:56 PM
CAS classification : [_separable]

\begin{align*} 2 x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 9
ode:=2*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_1}{\sqrt {x}} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 18
ode=2*x*D[y[x],{x,1}]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_1}{\sqrt {x}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.062 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{\sqrt {x}} \]