Internal
problem
ID
[23763]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
4.
The
Laplace
transform.
Exercise
at
page
199
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 09:44:58 PM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)-3*y(t) = 2*exp(t); ic:=[y(1) = exp(3)-exp(1)]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,1}]-3*y[t]==2*Exp[t]; ic={y[1]==Exp[3]-Exp[1]}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*y(t) - 2*exp(t) + Derivative(y(t), t),0) ics = {y(0): -E + exp(3)} dsolve(ode,func=y(t),ics=ics)