87.19.9 problem 10

Internal problem ID [23679]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 3. Linear Systems. Exercise at page 149
Problem number : 10
Date solved : Thursday, October 02, 2025 at 09:44:11 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=y \left (t \right )\\ y^{\prime }\left (t \right )&=-x \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=1 \\ y \left (0\right )&=0 \\ \end{align*}
Maple. Time used: 0.053 (sec). Leaf size: 13
ode:=[diff(x(t),t) = y(t), diff(y(t),t) = -x(t)]; 
ic:=[x(0) = 1, y(0) = 0]; 
dsolve([ode,op(ic)]);
 
\begin{align*} x \left (t \right ) &= \cos \left (t \right ) \\ y \left (t \right ) &= -\sin \left (t \right ) \\ \end{align*}
Mathematica. Time used: 0.003 (sec). Leaf size: 14
ode={D[x[t],t]==y[t],D[y[t],t]==-x[t]}; 
ic={x[0]==1,y[0]==0}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \cos (t)\\ y(t)&\to -\sin (t) \end{align*}
Sympy. Time used: 0.048 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-y(t) + Derivative(x(t), t),0),Eq(x(t) + Derivative(y(t), t),0)] 
ics = {x(0): 1, y(0): 0} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \cos {\left (t \right )}, \ y{\left (t \right )} = - \sin {\left (t \right )}\right ] \]