87.17.3 problem 3

Internal problem ID [23595]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 127
Problem number : 3
Date solved : Thursday, October 02, 2025 at 09:43:19 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }-4 y^{\prime }+4 y&={\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 19
ode:=diff(diff(y(x),x),x)-4*diff(y(x),x)+4*y(x) = exp(2*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (c_2 +c_1 x +\frac {1}{2} x^{2}\right ) \]
Mathematica. Time used: 0.047 (sec). Leaf size: 28
ode=D[y[x],{x,2}]+4*D[y[x],x]+4*y[x]==Exp[2*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {e^{2 x}}{16}+e^{-2 x} (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.173 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) - exp(2*x) + 4*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- 2 x} + \frac {e^{2 x}}{16} \]