Internal
problem
ID
[23584]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
119
Problem
number
:
15
Date
solved
:
Thursday, October 02, 2025 at 09:43:12 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x*diff(diff(y(x),x),x)-2*diff(y(x),x)+(x^2+2)/x*y(x) = 4+tan(x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],{x,2}]-2*D[y[x],x]+(x^2+2)/x*y[x]==4+Tan[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) - tan(x) - 2*Derivative(y(x), x) - 4 + (x**2 + 2)*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x*(x*y(x) + x*Derivative(y(x), (x, 2)) -